' L] ==
In l er AN IDG COMMUNICATIONS
PUBLICATION

February 1991

System Software
For GS and Mac
All in the Apple Family

Hard-Disk Drives
The SCSI Side of Life

Reviews:

BannerMania
LogoExpress
Gold Rush!
EuroWorks 3.0
Canada $4.50

02
0 ||

74470712066

USA $3.95

THE APPLE 11
CULTURE REBORN

By Paul Statt, Senior Editor

HyperCard — Apple’s popular
multimedia programming product
for the Mac — is reviving the

do-it-yourself spirit of the Apple II.

he best thing about any Apple computer has always

been its accessibility — that anybody with the urge

could learn to program and create unique software.

But as Apple's computers have become more power-

tul and more sophisticated, they've also gotten harder
to program. The Apple IIGs and the Macintosh, for
instance, don't have a native computer programming
language built in, as BASIC was in the original Apple I1.
Like all Apple Ils, the GS comes with Applesoft — but the
machine’s native mode is the 16-bit 65816.

HyperCard — for the Mac and now for the Apple I1Gs
— brings the hacker's spirit back to Apple. HyperCard Ilcs
is a nearly perfect clone of the Mac version — with all the
advantages and disadvantages of Apple's Macintosh
HyperCard 1.25. It adds color — a feature not found even
in HyperCard 2.0, the latest Macintosh version.

HyperCard IIcs, like HyperCard for the Macintosh, is a
way to organize information. But it’s much more than a

database manager. At its most prosaic, HyperCard is a ©

Photography # Ed Judice February 1981 « inCider » 37

R11 Rights Resarved

el 4 tetal :
; W, Htn and B = sh e view
g am of Lof s !
e

1199, 1991 by fople tm«

38 + inCider * February 1981

programming language. At its most poetic, it's
a way of life. As a language it’s up-to-date,
making use of what's known as object-oriented
programming.

Programming with an object-oriented
language is like building a car on an assembly
line: All the parts are there; your job is simply to
put them together. The HyperCard lifestyle is as
old-fashioned as the original idea of the Apple
computer — that anybody should be able to
write a program, that businesspeople should
write business software, that teachers should
write educational software, that kids can even
create their own.

As you read about HyperCard I1Gs, you may
think you have to learn to write HyperCard
programs — called scripts — to enjoy it. That's
not true. Thousands of programmers have
already written HyperCard stacks on subjects
ranging all the way from ecological awareness to
pornography.

Teachers will appreciate HyperCard's five
levels of control, from browsing in the stacks
(other people’s) to scripting your own, with
typing, painting, and authoring in between. But
Just about everybody who uses HyperCard — a
program designed to put you in control — will
want to write his or her own stacks. Basically,
with HyperCard you can do anything the GS can
do. Scripting is where the fun begins.

ON THE BUTTON

The key to understanding HyperCard is
understanding the role of cards, stacks, fields,
buttons, and backgrounds — the objects the Hyper-
Talk programming language gives you to
play with.

A card is what you see on a single screen (as in
Figure 1); a stack is a collection of cards. You
could think of it as a stack of index cards, but
these cards are live, and you control them. In
HyperCard IIcs, a card must fill the entire
screen, although it’s possible to hide the menu
bar at the top. (HyperCard 2.0 on the Mac
allows cards of different sizes.) The text and
graphics you see on the card appear on two
levels: background elements, which carry over
from card to card, and the material unique to
this card alone.

A background (Figure 2) can be as simple as
a white screen, or as pretty a picture as you can
scan, draw, or paint with HyperCard’s built-in
graphics tools.

Every card needs a background; in general, as
we've noted, you put things you want to see on
more than one card into the background. If you
don't want to see anything repeated on other

| cards, you'll include an empty background.
| In addition to graphics, most backgrounds
| contain one or more buttons, the switches or
controllers that make something happen
(display another card, play music, perform
calculations, get help, print, use a modem), and
~ fields, areas containing text or numbers.
Common background buttons include the
 home, next card, and previous card icons (small
~ pictorial representations, Figure 3). One miscon-
~ ception is that a HyperCard stack must have
~ these buttons, but they aren’t necessary. (See the

e

e O e e

 accompanying sidebar, * ‘Why Did You Do It That %
Way?" " for a report on button programming.) E
i
Table. Elementary functions used in ﬁ
HyperCard llcs, as specified by the ?
Standard Apple Numerics Environment on |
the Apple llcs' 65816 microprocessor.
log2(x) computes base 2
i logarithm of x
In(x) computes natural
(base e) logarithm of x
In104J computes natural
logarithm of (x+1)
exp2lx) computes 2%
ExiCd EOHiptes & , Hez i ﬂb‘#*&‘mu il M«‘-ﬁmﬂamw
expilhg Comptese’ 1 2 s £ hﬁss H«f"“jwrﬂ g ,:'-?l.’;-.-m&-
cos(x) computes cosine of x ; e R 5 ik
sin(x] computes sine of x
tan(x) computes tangent of x
atan(x) computes arctangent of x
random(x] computes pseudorandom
number with x as its seed
compound(r.n) | computes (1 +r"
annuity(r,n) computes 1 -(1+r) " /P

Buttons, whether background or unique, can
| appear as almost any graphic (Figure 4). Some
| don't appear at all — they can be invisible. Some
buttons look like the electrical switches on which
| they're modeled, some look like round rect-
angles, some look like pictures (icons). Hyper-
Card includes a number of icons in a special file
you can use in your stacks. An Icon Editor stack
that lets you draw your own is included with
HyperCard Ilcs (Figure 5). Triad Ventures has

also written a desk accessory, included in its
HyperCard Ilcs Utilities package, to help you
create icons.

WORD AND IMAGE

Buttons are one way HyperCard gets graphics
onto the computer screen, but hypermedia
includes good old text, too — in objects called

. fields (Figure 6), as we noted above. .
If you've had any experience with database @b vnn o i a B e et e

February 1991 « inCider » 39

w file Efit Bo Tools Paint Options Potterns

Figure 5.

The Icon Editor program
included with HyperCard lics
is the way to draw icons to
use in your own stacks, or in
other people's. Whenever you
paint or draw in HyperCard,

you can tear off the "Tools"

and “Patterns” menus from
the menu bar and they'll
always be available wherever
you like on the screen. The
“Patterns” menu might have
been called “Colors"” but for
the legacy of monochrome
HyperCard for the Mac. The
“Home,” "“Previous,” and
“Next Card" buttons are in
interesting positions in this
stack — they don't have to
be at the bottom and in

the corners.

management, you already know what a field is —
a single part of a record. A HyperCard text field,
like a database’s, can contain either words or
numbers; it can appear on a single card, or in l
every card as a background. You can save the
contents of a HyperCard field as ASCII text, and
import ASCII text into a stack. HyperCard can
also perform calculations, including trigono-
metric operations, on numbers appearing in a
field. (See the accompanying Table.)

Stacks are programs written in the HyperTalk
language (Figure 7). Although HyperTalk
doesn’t include commands for every possible
task — controlling a videodise player, for
example — you can enhance its native abilities
with extended commands, or XCMDs, snatches of
code written in C or Pascal that you call from a
HyperTalk script. (XCMDs should remind
Applesoft BASIC programmers of ampersand
commands, which let you call a short machine-
language program from BASIC. The effect is
similar. See the section below, “Speaking the
Language.” for more on Hyperlalk program-

“In Italy for 30 years under the Borgias
they had warfare, terror, murder, and
bloodshed, but they produced Michel-
angelo, Leonardo da Vinci, and the
Renaissance. In Switzerland they had
brotherly love, they had 500 years of
democracy and peace, and what did they
produce? The cuckoo clock.”
— Orson Welles as Harry Lime,
“The Third Man,” 19489

While nothing as dramatic as murder and
bloodshed occurred during the creation of
HyperCard lics (well, we did have an earth-
quake, but that was probably just a coin-
cidence), users are often justifiably curious
about the process of designing and creat-
ing a program as complex as HyperCard
lies. Usually the guestion is posed while
screaming for the head of the “idiot who
wrote this thing,” but nevertheless, what
follows are some of the issues we dealt
with while writing HyperCard llGs.

At the most basic level, our major design
requirement was to make an Apple llcs ver-
sion of HyperCard that was completely
compatible with HyperCard 1.25 on the
Macintosh computer. At the same time,
we wanted to make improvements to the
program that would benefit users and take
full advantage of the capabilities of the
Apple llss — hence a color HyperCard with
improved printing and reporting capabili-

“Why Did You Do It That Way?”

ties, as well as additional functionality in
the HyperTalk scripting language.

A complete description of how we
designed and wrote HyperCard llcs would
be extremely long, so as one of the two
engineers who worked on HyperTalk, I'm
going to confine my discussion to just two
features in HyperTalk that | believe repre-
sent some of the design decisions we made.
The play command. We agonized over the
design of the play command for a long time.
In Mac HyperCard, Play lets you utilize the
single-voice sound capabilities of that
machine. (The play command produces the
requested sounds immediately. Multiple
play requests are executed sequentially, not
simultaneously.) The GS, however, can gen-
erate more complex sounds than the Mac.

Naturally, we wanted HyperCard llGs to
be able to take full advantage of the GS’
sound capabilities, but we were under sev-
eral constraints. First and foremost, the
GS version had to be completely compatible
with the Mac play command. In addition,
there were language constraints. Hyper-
Talk, as a language, is supposed to be
English-like and simple to read and under-
stand. Whatever syntax we arrived at
would have to comprehensible by the aver-
age user, not just acoustic engineers. And
finally, whatever we came up with had to
be useful to the majority of users — we

weren't going to add a super-powerful
command only three people would need.

Initially we were extremely ambitious, and
tried to create a syntax that would give
you extensive control over the considerable
sound capabilities of the GS. Regrettably,
designing a syntax that was powerful,
understandable, and backward compatible
proved unrealizable, given the time con-
straints we were under. The language-
design issues were difficult because of a
rather odd situation — the GS' sound
capabilities were too powerful! We simply
couldn’t figure out a way to unleash all that
power and have the syntax understood by
nonprogrammers,

We then tried a much simpler approach,
a natural extension of the original syntax:
one that would let you direct a particular
sound to a specified channel, and optionally
delay its execution. After setting up several
sounds on separate channels, you could
then tell the GS to start, and all sounds
would play simultaneously. We had high
hopes for this approach, but we were
tripped up by the problem of synchronizing
multiple sounds. Specifically, we had trouble
resolving the language issue (and it's a lot
more involved than you might think): how to
accurately make sound B start 10 seconds,
or even harder, 10 beats, into sound A.

Deadlines were looming, so rather than

40 « inCider « February 18891

—I

B —————Y

ming.) You can attach an XCMD either to a
single stack or to the HyperCard program itself.
Triad Ventures, for instance, has already written
some XCMDs to facilitate playing music (avail-
able in its MIDI Music package).

PLUS AND MINUS

One of HyperCard's secret strengths is that it’s
a pretty good database manager (Figure 8).
Apple plays that down because it doesn’t want
software companies to complain that Apple’s
controlling the market.

Besides, “information engine” sounds more
glamorous than “database manager.” But teach-
ers who need class records and individuals who
don’t need relational structured query language
(SQL) just to keep Christmas card lists will find
that they can write or buy HyperCard stacks that
do the job.

Actually, HyperCard 116" number-crunching
power would make some database managers
envious. Financial functions such as annuity

interest, and mathematical functions such as
natural logarithms and trigonometric functions
(see the accompanying Table), are available —
and youwon't find those in AppleWorks Classic.
HyperCard I1GS uses Standard Apple Numerics
Environment (SANE) protocol, which gives you
access to a wealth of functions, and can speed up
calculations considerably if you add a math
coprocessor to your GS.

The program’s most obvious strength is that
your GS will be able to run stacks created for the
Mac, and your Mac will be able to run GS stacks.
At press time, the pair of stacks that perform the
conversion, Hyperl\/'lover GS and HyperMover
Mac, weren't available. But if you compare the
look of a Mac stack and its Apple 116 cousin, you
can see that converting one to the other
shouldn’t be too difficult.

We tried to copy the text of a HyperCard pro-
gram, called a script, from a GS to a Mac LC via
an Applelalk network, but it wasn't quite that
simple. The text arrived intact, but the program

brings the
hacker’s
spirit back
to Apple.”

calculation and compounding for computing

didn’t quite work on the Mac. You'd need to @

do a mediocre job on a new syntax, and
thus a disservice to the users and ta the
capabilities of the machine, we decided to
stay with the original single-voice syntax
from the Mac.

Not wanting to neglect all that power,
however, we added two new XCMD call-
backs: BeginXSound and EndXSound.
XCMDs are user-created extensions to
HyperTalk; callbacks are routines that let
HyperCard and XCMDOs communicate.

BeginXSound lets an XCMD take over the
GS sound chip completely; EndXSound
gives control back to HyperGard. With
these new callbacks, you can extend the
sound capabilities of HyperCard lls as far
as you want, and without the constraints
we were under.

You can write sound XCMDs that are as
specialized, powerful, or weird as you like,

. and we strongly urge you to do so. That's
what XCMDs are for.
Button families. The members of the
HyperCard liGs engineering team are also
experienced Mac HyperCard users, and
thus had a great deal of experience creat-
ing stacks with sets of radio buttons.
Radio buttons, as defined by Apple's
Human Interface Guidelines, are used to
select one, and only one, choice out of
many. If one radio button is highlighted,
the other radio buttons must by definition

be dark. And each button has to have
a script that handles this procedure.

Imagine a stack with five radio buttons.
To act properly, button 1's script would
look like the following:

on mouselp

set the hilite of button 1 to true
set the hilite of button 2 to false
set the hilite of button 3 to false
set the hilite of button 4 to false
set the hilite of button 5 to false
end mouselUp
Button 2's script would look something
iike this:

on mouseUp

set the hilite of button 1 to false

set the hilite of button 2 to true

set the hilite of button 3 to false

set the hilite of button 4 to false

set the hilite of button 5 to false

end mouseUp

And so on. Not very difficult, certainly, but
a terrible nuisance. As longtime HyperCard
users, we realized that a lot of tedious
scripting could be avoided if the machine
could handle highlighting and dimming
automatically.

As it happens, the Apple lics Toolbox
made this relatively easy to implement, and
thus button families were born. By util-
izing button families, a stack developer
doesn't have to write any code at all

to handle the proper highlighting of
radio buttons.

An interesting thing happens when an
experienced Mac HyperCard user sees
HyperCard lics. While the obvious features,
such as color, impress them, what really
excites them are button families, and for
the same reason they excite us — they
save HyperTalk scripters lots of time.

As it happens, we decided to make fam-
ilies a property of all button types, not just
radio buttons. That's of course their most
obvious use, and although there's a danger

that by not restricting their use, button
families may be used for evil purposes (that
is, in violation of Apple's Human Interface
Guidelines), we felt it was best to give pro-
gram writers the extra flexibility. In fact, if
you look at their scripts, you'll notice that
the rectangular buttons along the bottom
of the home stack are implemented with
button families.
A personal note. We brought a lot of
personal experience as HyperCard users to
the table when determining which features
should be added or improved for the GS
version, This program was written by
HyperCard users. We're pretty proud of
HyperCard llcs, and hope you enjoy it and
get a lot of use out of it.

— John Lawler,

Apple Computer

February 1991 « inCider = 41

YR N T

L]

i e PO, S BT TE s RE S
;._l B 1‘;_. oAl o e

HyperCard llcs script

. | on mouseUp
L set numberFormat to 0.00
| get card field "Amount”
' miltiply it by card field "Rate"
f divide it by 100
put it into card field "Interest"
add card field "Amount" to it
put it into card field "Total"
divide it by 12
put it into card field "Monthly"
end mouselp

HyperCard 1.25 script

on mouselp
set numberformat to 0.00
get card field "Amount"
multiply it by card field "Rate"
divide it by 100
put it into card field "Interest"
add card field "Amount" to it
put it into card field "Total"
divide it by 12
put it into card field "monthly"
end mouselp

42 « inCider * February 1991

change some commands, but you could do the
translation in a mechanical way — doing a find-
and-replace on the offending structures. Tedious
for you, but a snap for HyperMover.

The HyperMover programs will be available
to developers and user groups. But other chal-
lenges remain: Stack conversions will pose a
tricky legal question, for one thing. If you buy,
say, a company's GradeBookStack for Macintosh
HyperCard, do you need to buy another copy or
asite license to run it on HyperCard Ilcs? If you
can legally use any Mac stack, a lot of stacks —
commercial as well as public-domain — will be
avallable ror Hypercarda 1os.

A number of stacks are already available for
Roger Wagner's HyperStudio — you don’t even
need to own HyperStudio to use some of them
if they were created with the runtime version of
the program. (See “Shareware Solutions,” What's
New, p. 20 in this issue.) That won’t be possible
with HyperCard.

It remains to be seen how many stacks will be
written for HyperCard I1cs. Mac HyperCard
ignited interest initially among commercial
developers, but that burned out rather quickly.
At press time, we knew the Boston Computer
Society was writing a disk of GS shareware stacks,
and ‘Iriad Ventures had written a commercial
MIDI Music stack using Apple’s new GS MIDI
Synth tool.

AUDIO AND VIDEO

Given the musical talent of the GS, it's a
shame HyperCard I1Gs can’t sing on its own, or
at least play the piano. The version we tested
had a choice of two musical instruments: harp-
sichord and a “boing” sound, which simply
doesn’t sound very musical. A Scripter’s Tools
stack included with HyperCard 11cs, however,
contains 11 other sound resources for instru-
ments such as piano and guitar, which you can
attach to a single script or to the program itself.
(See the sidebar, * *"Why Did You Do It That
Way?' " for details.)

HyperCard doesn’t have built-in sound digi-
tization, however, as HyperStudio does. (See
Figure 9. HyperStudio also includes a micro-
phone, much like the Mac LC, making it easy to
add sound to a stack.) Is Apple avoiding putting
too much musical muscle into any of its products
because it fears legal complications with Apple
Corps, the Beatles’ record company?

As we noted above, the current version of
HyperCard IIcs also doesn’t include commands
for running a videodisc player, as HyperStudio
does. HyperStudio has to offer lots of extras,
because, lacking a HyperTalk-style program-

ming language as it does, adding features to the
program is hard.

SPEAKING THE LANGUAGE

HyperCard is a general-purpose database
manager, paint program, programming lan-
guage, and even something of a word processor.
The drawback? HyperCard — either version —
is slow. HyperTalk simply adds another layer
between you and the machine. HyperTalk is an
interpreted language, which means that every
line of code must be translated into something
the GS understands before the machine starts to
do anything. The advantage of an interpreted
language is that the same code works on differ-
ent machines. That's especially clear in the case
of HyperCard: It's easy to write code that works
on both the GS and the Mac.

HyperTalk is a plain-speaking, unaffected
programming language, but a programming
language nevertheless. You have to mind your Ps
and Qs when you write a HyperCard stack —
make sure you spell everything correctly and
leave the right number of spaces.

HyperTalk is forgiving in some ways. It’s
unusual in that it lets you use two different words
in certain cases to mean the same thing — slow
and slowly, or go to and go, for instance. But it’s
about as much like spoken English as the
commands players type into a text-adventure
game. It requires some discipline to make your-
self understood.

Pricing and Availability

At press time, final decisions about the price
and distribution of HyperCard llcs hadn't been
made. Jane Lee, product manager for Hyper-
Card llgs, told us in November, though, that
the price "should be around $93." That's what
HyperCard for the Macintosh costs. "It will
initially be distributed by Apple,” Lee said, in
contrast to HyperCard Mac, which is now dis-
tributed, in part at least, by Claris, Apple's
software subsidiary. “It will be available through
dealers and APDA [the Apple Programmers and
Developers Association, phone (40B] 562-
3910, (BOD) 2B2-3732], and we are pursuing
licensing by [Apple-authorized] user groups.”

Lee noted that because "you can't use
[HyperCard llGs] out of the box with your new
[Apple lles] CPU — it needs 1.5 megs and a
hard drive or network to run — HyperCard lics
will not ship with the CPU," as Macintosh
HyperCard does.

In addition, Lee said, "HyperMover will be
available to developers and through APDA."

= F:S:

1950 December week 52 2
Mon 25

-
L

Towe 26 Fri 29

R

A

L
Vou

Wed 27 Sat 30 (_Iwtend) Sun 31

ik

ne
o

) o e)

Figure 8.

Calendar stacks for
HyperCard lics (top) and Mac
HyperCard 1.25 (bottom).
HyperCard handles a small
job like your personal
appointment schedule easily;
a more taxing task might
overpower it. HyperCard llcs
includes this calendar stack
and one to file addresses and
phone numbers.

& file Bt Move Tools Objects Colors Bptisns Lerd 1

v+ HyperStudio™ +

)

Demg Stocks
(Showt me so@e examples)

) =

Besources tient :
in the packege?)

&

Intreduction

(What 15 HyperStedie?)

(Do | have tomake everythingmyseli?) (What els

Click on the posspert or dancer for o
somple. Click on the Home Cord when dene

Figure 9.

HyperStudio for the Apple
lies is a program much like
HyperCard llcs, which has
been available for two years
already. Its home card, top,
is quite a bit like
HyperCard's, but stacks
aren't compatible. On the
bottom, a sample card from a
HyperStudio stack. On this
card, designed to teach the
Spanish language, you can
click on the dancer to hear a
prerecorded human voice say
“la senorita.” This kind of
sound recording isn’t
available in HyperCard llcs.

February 1991 = inCider = 43

C“Atits
most
poetic,
HyperCard
is a way
of life.”

44 » inCider * February 1991

HyperStudio is easier to use than HyperCard,
if by that you mean you can write a program
without writing a line of code. HyperStudio
never gets to the scripting level. It's indeed
possible to build a HyperCard I16s stack without
HyperTalk by simply combining elements, but
it's like baking a cake from a mix — the result
will be edible, but bland. In any case, HyperTalk
isn't exactly difficult. It strives to look like
English, and although the impersonation isn't
always successful, the meaning of a line such as
put the date into field “Today” should be pretty clear.
You'll need to take some time, and perhaps read
a book or two, before you can write a script in
HyperCard.

Addison-Wesley publishes excellent Hyper-
Card references, and at press time also had a
HyperCard 11Gs book in the works. You may
need to spend a weekend learning about it;
an evening might do it. But you won't need to
take a college-level course as you would to learn
Pascal or C.

If you don’t want to type even one line of
program code, HyperStudio can do much of
what HyperCard can, and some things it can't
(such as videodisc control and sound digitiza-
tion), simply by pointing and clicking a mouse.
Some teachers will want their students to have
the chance to create stacks without program-
ming; others may want students to learn to write
a computer program.

An interesting aspect of HyperCard, GS or
Mac, is that you never need to save a stack. If
you've experienced a crash or two, you'll under-
stand the wisdom of this feature in a program-
ming language. HyperStudio, which lacks the
language, lets you decide when and if you want
to save. If you want to experiment with Hyper-
Card, you have the npli(m to Save a Cr;p_v u['_mur
work up to a certain point.

A BIG PROGRAM

To use HyperCard, you need a big GS: 1.5
megabytes of memory and a hard-disk drive or
network. Those are the official system require-
ments. We used a 1.25-megabyte GS with a 40-
megabyte hard drive to test a beta version of the
program. It was usable with that setup, but delays
and out-of-memory messages were frustrating.
The system ran more smoothly with 4 megabytes
of RAM and an accelerator.

Faster speed really isn't crucial, but the hard
drive is. After all, the whole point of HyperCard
is that it's a way to manage lots of information
— it gets interesting only when you have lots
of cards. Some of the best Mac stacks, for
instance — such as The Visual Almanac, shown

in Figure 2 — run from CD-ROM discs with half
a million megabytes. An AppleTalk network
would be a good way for a school to run Hyper-
Card Ilcs.

Not everyone has hard-disk drives, CD-ROM
players, and local-area networks, though. That's
the crucial advantage HyperStudio has over
HyperCard IIGs: HyperStudio runs on a GS with
512K of RAM and a 3.5-inch floppy-disk drive.
You can even create stacks that run with less
memory, and run without HyperStudio.

But let’s not take anything away from the
supreme achievement of HyperCard I1Gs — it's
a Macintosh program that runs on the Apple
[cs. The hundreds of Mac HyperCard programs
that are available are now also available for the
GS. HyperCard llcs should actually help make
HyperCard legitimate, and help maintain
Apple’s dominance in the school computer
market.

The irony is that HyperCard may eventually
help make the Macintosh legitimate in schools.
Schools that have GSes can now use HyperCard
[1GS to run existing Mac stacks, many of which
are designed for education. Schools, or teachers,
who buy Macs can use the new machines to write
educational software that will run on both Macs
and Apple IlGses. The twain have met.

PRODUCT INFORMATION

Apple Il HyperStudio 2.1
Public-Domain Disks: Roger Wagner
HyperCard lles Stacks Publishing

Apple Il SIG

Boston Computer
Society

One Center Plaza
Boston, MA 02108
(6171 227-4636 x201

HyperCard Stack
Design Guidelines,
$16.95

HyperCard Script
Language Reference,
$22.95
Addison-Wesley
Publishing

Route 128

Reading, MA 01867
(817) 944-3700

HyperCard lics

Apple Computer
20525 Mariani Avenue
Cupertino, CA 95014
(4081 974-1010

$99

HyperCard llcs
Utilities

HyperStuff Clip Art
MIDI Music

Triad Ventures

PO Box 349
Smithtown, NY 11787
(518) 732-3771
(516) 360-0797
$39.95 each

1050 Pioneer Way
Suite P

El Cajon, CA 92020
(618) 442-0524
$149.85

$10 demo disks

HyperStudio Network
RBO. Box 103
Blawenburg, NJ 08504
(609) 466-3186
$29/year

MIDI Synth

Apple Programmers
and Developers
Association

Apple Computer
20525 Mariani Avenue
MS-336

Cupertino, CA 95014
(40B) 562-3910
(BOO) 2B2-3732
$35

The Visual Almanac
Optical Data

30 Technology Drive
Warren, NJ 07058
(90B) 668-0022
$100

ot oo o

